Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Seismic anisotropy of the Earth's mantle has been mostly attributed to crystallographic preferred orientation (CPO) generated during subduction and convection of an anhydrous mantle. But some hydrous phases are also stable at mantle conditions. Here we present results from diamond‐anvil cell deformation experiments at high pressure and temperature on hydrous phases Egg [AlSiO3(OH)], δ [AlO(OH)] and hydrous stishovite [Si1‐nH4nO2], transformed from the clay mineral kaolinite. They develop strong CPO during axial compression, suggesting that they likely contribute to seismic anisotropy and heterogeneity in the mantle. Comparing experimental results with viscoplastic polycrystal plasticity models suggest that phase Egg deforms dominantly by (001) slip, δ by (010) slip and stishovite by {100} slip which could be incorporated in future models of mantle geodynamics.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract Serpentine minerals have received a lot of attention because of their unique crystal structures, their wide occurrence in orogenic belts and their potential role in contributing seismic anisotropy in subducting slabs. Several studies have investigated crystal preferred orientation (CPO) in high temperature antigorite serpentinites from Japan, the Alps, Spain, Cuba and Tibet, documenting significant crystal alignment. However, only a limited number of lower grade serpentines have been explored to date. Mainly because of submicroscopic microstructural heterogeneities CPO cannot be measured with conventional methods such as optical microscopy and EBSD. In this study 15 serpentinites from different tectonic settings in California, the Central Alps and Northern Spain have been investigated, mainly with high energy synchrotron X-ray diffraction, to quantify bulk crystal alignment. We find that CPO is strong on sheared surfaces of fractured blocks and secondary veins but the bulk of most serpentinite samples, except high-grade recrystallized antigorite serpentinite, show only weak crystal alignment. Correspondingly calculated seismic anisotropy based on CPO is not very significant. This is supported by very heterogeneous microstructures as documented with SEM and TEM analyses.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract The Duluth Complex is a large mafic intrusive system located in northeastern Minnesota emplaced as part of the 1.1-Ga Midcontinent Rift. Several Fe–Ti oxide-bearing ultramafic intrusions are hosted along the Western Margin of the Duluth Complex, and are discordant bodies present in a variety of geometries, hosted in multiple rock types, and dominated by peridotite, pyroxenite, and semi-massive to massive Fe–Ti oxide rock types. Their origin has been debated, and here we present geochemical evidence and modeling that supports a purely magmatic origin for the Titac and Longnose Fe–Ti oxide-bearing ultramafic intrusions. Ilmenite and titanomagnetite textures indicate a protracted cooling process, and δ34S values of sulfides reveal little assimilation of the footwall Virginia Formation, a fine-grained pelitic unit that contains sulfide-rich bands. We model the crystallization of a hypothetical parental magma composition to the host intrusion of Longnose using Rhyolite-MELTS and demonstrate that the accumulation of Fe–Ti oxides in the discordant intrusions cannot be explained by density-driven segregation of crystallized Fe–Ti oxides. Instead, we show that the development of silicate liquid immiscibility, occurring by the unmixing of the silicate melt into conjugate Si- and Fe-rich melts, can result in the effective segregation and transportation of the Fe-rich melt. The Fe-rich melt is ~2 orders of magnitude less viscous than the Si-rich melt, allowing the Fe-rich melt to be more effectively segregated and transported in the mush regime (crystallinities >50%). This suggests that viscosity, in addition to density, plays a significant role in forming the discordant Fe–Ti oxide-bearing ultramafic intrusions. We propose a genetic model that could also be responsible for the Fe–Ti oxide-rich layers or bands that are hosted within the igneous stratigraphy of mafic intrusions of the Duluth Complex.more » « less
An official website of the United States government
